Mu2e-doc-5231-v2

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

Roadmap To Operations

Rob Kutschke Mu2e Computing Review March 6, 2015

Outline

- Draft milestones
- Housekeeping
- Strawman Org Chart
- Engaging non-experts
- Summary

External Constraints

- March 2016
 - DOE CD3c review
- Dec 1, 2015
 - Finish computing work for DOE CD3c review
- Q4 FY20
 - Start data taking with complete detector outside of the magnet.
 - This defines start of operations
- Goal:
 - Develop a plan to be ready for data taking in Q1 FY20
 - A major milestone every year or so.

Planning Milestones

- M1: April 1, 2015: Freeze code for CD3 production runs
- M2: Dec 1, 2015: Work for CD3 done
- M3: July 1, 2016
- M4: July 1, 2017
- M5: July 1, 2018
- M6: July 1, 2019
- M7: July 1 2020:
 - Cosmic Ray Tests; detector in the garage position.

M1 - April 1, 2015

- Next week: look at detailed tasks
 - Triage, prioritize and assign people
 - Highest priorities are:
 - Geometry updates
 - Changes to data products
 - Kill planes need for proton beam jobs, stage 1
 - Update mu2egrid for SAM and dCache
 - Finish commissioning: CVMFS, OSG running
 - Load test CVMFS, dCache OSG running
 - Many tasks are really reco or analysis phase projects and can be deferred until simulation production has started.
- Execute that plan

M2 Dec 1, 2015

- Execute the data processing campaign
- Analysis results ready for CD3c
 - Plus the development this implies
- Binary distribution and satellite releases working
- Proof of concept for running Offline trigger code in a simulated Trigger/DAQ environment:
 - Loop-free repository structure
 - Binary release of Offline visible to Trigger/DAQ
- Start to execute plan for engagement of non-experts.
- Expand validation suite
- Adopt coding standards document
- Start on the housekeeping list

M3 July 1, 2016

- Geometry and Conditions systems:
 - Reco geometry: nominal geometry plus conditions
 - Simulate with one geometry and reconstruct with a different one.
 - Can start alignment studies after this is in place.
 - Transition from text files to a conditions DB starting now.
 - Learn from LHC/BaBar etc
- Much improved event display; earlier if possible.
- Code reviews established
- Start to design data processing workflows; build and train the first group who will run them.

M4 – July 1, 2017

- Start date for:
 - Small scale data challenge
 - Small scale alignment challenge; not all degrees of freedom needed be covered.
- Conditions DB fully operational before this
- Demonstrate ability to reconstruct simulated cosmic ray tracks, field on and off.
 - Existing track finding code will not work at all
 - Track fitter will work.
 - Includes matching CRV with tracker and calorimeter
 - Understand value of field-off running for commissioning
 - Understand value of cosmic rays for alignment (field on & off)

M5 July 1, 2018

- Start date for a second iteration alignment challenge.
- Start date for a calibration challenges:
 - Momentum scale
 - Space time relation for straws
 - We will recognize more items as we approach this time

M6 July 1, 2019

- Start date for full scale data challenges:
 - Cosmic ray running
 - Data running
- Start date for full scale alignment challenge:
- Finish these by Jan 1, 2020 and we will have 6 months to address issues before cosmic ray data taking starts

M7 July 1, 2020

Housekeeping

- Jobs that we need to do but don't have firm deadlines
- Most are computing tasks but a few have physics content

Before Neutron/Cosmic Stage 2 or Beam Stage 4

- Define a data object that represents the energy deposition in one crystal in a more compact format than saving every G4Step and every G4Particle that contributes.
 - But keep enough information to have MC truth for cluster splitoffs and albedo
 - Promises large reduction in disk space (>> 2x for files that have calorimeter info)
- We can move ahead without doing this but it will save storage space and transfer time.

Tracking

- Short term: Make persistent track data products
 - Data products are, by design, just data
 - Enough information to restore a fully functional track fit object that will give the same answer.
 - The big question is what functionality do we need to support for operations on persisted tracks without the need to restore the full track fit object.
 - Would like this to have the same public interface as a fully functional track fit object so that code is interchangeable.
- Longer term:
 - Modernize the BaBaR Kalman filter code
 - CLHEP -> Eigen within BaBaR code
 - ATLAS reports big speed improvements

Refactor Mu2e Offline Repository Structure

- Remove obsolete code and data products
 - Still available if you check out an old tag
- Refactor directory structure to break linkage loops
 - Start doing closed links
- Deploy BaBaR Kalman filter as an external product
- Split Mu2e Offline Repository
 - Core: all code needed for production, testing
 - One or more "analysis" repositories
 - Use the satellite release model to build these
 - Are allowed to be interdependent? (I vote no)
 - Will we allow data products to be defined in analysis repos?
 - Stntuple will move into one of these repositories

Code Housekeeping (1)

- Scrub code so that it compiles without warnings
 - Add –Werror to compiler flags
- Scrub code for names that were chosen on Opposite Day.
- Scrub misleading/redundant G4 and Mu2e prefixes from class/function/object names, directory names ...
- Switch all enum-matched-to-string classes to the new style.
- Scrub magic numbers from production FHiCL files and replace with proper names.
 - Eg. 11 -> e_minus
 - Underlying support for this is already in place

Code Housekeeping (2)

- Tracker code was written before parts had established names. Class/object names do not match names on drawings and in documents.
 - Update it.
- Scrub code to eliminate unneeded headers and link libraries
 - And headers that should be in .cc not .hh
- Refactor geometry service to break compile time couplings.
- Scrub geometry *.txt files for unused/obsolete entries
- Scrub code to move inappropriate implementation from header to .cc

Code Housekeeping (3)

- When we have art with ROOT 6
 - Update persistency
- Recent FHiCL updates will allow us to rewrite top-level .fcl files in a way that is both more transparent and much more maintainable
 - @table, @sequence, @erase

Particle Data Table (PDT)

- Analyses need a PDT to interpret MC information
- Needs to G4-free but agree with G4 PDT
- Current use HepPDT. But ...
- ... HepPDT is broken.
 - Asked for fixes 5 years ago; no response.
 - It's small. Copy it and fix it.
 - Edit text table file to sync masses, names etc with G4 where appropriate
 - Instead of matching G4 names it might make more sense to make all names legal C++ identifiers so that they can be used as enum names?

Code Management

- Present practice is push-to-remote-master
 - This works because we have a small community of developers with largely separate spheres of interest.
- Eventually want a request-to-pull model
 - Requires a dedicated code management staff
 - Pull code
 - Merge and validate the merged code
 - Reject code that fails validation or does not otherwise conform to standards
 - Add successful code to a release candidate branch.
 - Need to make sure that this does not become a bottleneck
 - The payoff is a more robust code suite

Management Structure for Operations

- Operations is in 2020 so we have not spent much time on this
- At this stage all that we can really do is list the roles that need to be filled.
- The next page is a strawman for an org chart that is based on an old CDF org chart plus some perturbations.
- There are still a few glitches in this model and we will look at other models over the next few years.

Strawman Management Structure during Operations?

Comments on the Strawman Org Chart

- Offline Computing Management has 2 groups of functions:
 - A development and operational
 - Two things don't fit nicely into this breakdown
 - A QA organization
 - A liaison to the trigger/daq/online organization(s)
- Under "Tools" and "Data Processing" the numbered bullets are subgroups.
- Where do algorithms and calibration codes live?
 - Probably in the appropriate detector or analysis group.
 - Need to discuss with stakeholders
- Core code is anything that Mu2e maintains that is not an algorithm.

Comments on the Strawman Org Chart

- QA means QA for code, scripts, operational procedures.
 - Needs to been near the top of the organization
- Code managements
 - Use a request-to-pull model
 - QA gets involved here
 - Validate and merge into a release candidate branch
- Release management
 - Work with stakeholders to decide what functionality belongs in which release.
 - Incorporates validation code provided by algorithm groups and others.
 - Runs validation code used to validate releases.

Engaging non-Experts

- It's on our radar now and we have ideas
 - How do we onboard new people?
 - Those who will work with Mu2e Offline
 - Those who will work with "ntuples"
- Other people may have different ideas
- Next step: work with collaboration to develop a phased plan.
- Start to execute the plan by fall 2015
- How fast we work through the plan depends on available resources and competing priorities.
 - Collaboration needs to be involved in setting scope and priorities
- Must avoid the first-out-of-the-gate wins problem.
 - We must adopt a robust long term solution.

Summary

- We have presented a rough draft of how we get from now to the start of operations
 - In the short term we have a lot of detail.
 - In the longer term we just have highlights and milestones
- There is a large body of housekeeping work
 - This could greatly benefit from a utility programmer
- We have a strawman for the computing org chart in 2020
 - We have a list of questions to ask
- Engaging non-experts is a priority and we will consult with the collaboration this summer to develop a phased plan.

